HW02 - Ideal Gases

⚠ This is a preview of the draft version of the quiz

Started: Aug 8 at 4:48pm

Quiz Instructions

Homework 02 - Ideal Gases

Question 1	1 pts
A gas is enclosed in a 10.0 L tank at 1200 mmHg pressure. Which of the following is a reasonable value for the pressure the gas is pumped into a 5.00 L vessel?	e when
O 24 mmHg	
○ 0.042 mmHg	
O 600 mmHg	
2400 mmHg	

Question 2	pts
A sample of gas in a closed container at a temperature of 76°C and a pressure of 5.0 atm is heated to 399°C. What pressu does the gas exert at the higher temperature?	re
O 0.95 atm	
② 2.6 atm	
O 26 atm	
O 9.6 atm	

Question 3	1 pts
A flask containing 163 cm ³ of hydrogen was collected under a pressure of 26.7 kPa. What pressure would have been re for the volume of the gas to have been 68 cm ³ , assuming the temperature is held constant?	quired
○ 78.2 kPa	
O 32.0 kPa	
O 64.0 kPa	
O 11.1 kPa	

A sample of nitrogen gas is contained in a piston with a freely moving cylinder. At 0°C, the volume of the gas is 371 mL. To what temperature must the gas be heated to occupy a volume of 557 mL?

-91.2°C

484°C

137°C

212°C

Question 5	1 pts

00 atm at 50.0	of a gas exerts a pres °C?	saire of 1040 toll	at 00.0 C. III WIII	volume would the c	ато сапро охот и р	000010
3.33 L						
0.581 L						
6.84 L						
10.5 L						

Question 6
1 pts

What mass of O_2 is required to produce 14.5 g of CO_2 if the reaction has a 65.0% yield? $CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(g)$ 0 32.4 g 21.1 g 13.7 g 16.2 g

Question 7	1 pts
Consider the following reaction:	
$2AI + 6HCI \longrightarrow 2AICI_3 + 3H_2$	
This reaction has a yield of 82.5%. How many moles of HCl are needed to produce 14.0 L of H_2 at 351 K and 1	I.11 atm?
1.31 mol	
○ 1.08 mol	
○ 0.890 mol	

3 of 12

O.540 mol	
Question 8	1 pt
The reaction below has a percent yield of 45.0%.	
$H_2(g) + Cl_2(g) \longrightarrow 2HCl(g)$	
How many moles of HCl gas are produced if 15.5 L of Cl_2 at STP and excess H_2 are reacted?	
○ 0.769 mol	
O 0.623 mol	
O 0.346 mol	
0.156 mol	
Question 9	1 pt
If you have 44.8 L of nitrogen gas at standard temperature and pressure, how much will it weigh?	
② 28 g	
○ 56 g	
□ 28 kg	
O 44.8 g	
9	
9	
Question 10	1 pt
	1 pt

34.5 g/mol	
O 243 g/mol	
Question 11	1
What is the density of nitrogen gas at STP?	
2.50 g/L	
O 4.00 g/L	
O 0.625 g/L	
○ 1.25 g/L	
Question 12	1
A chemist has synthesized a greenish-yellow gaseous compound that contains or 7.71 g/L at 36.0°C and 2188.8 mmHg. What is the molar mass of the compound	
☐ 86.9 g/mol	
O 25.8 g/mol	
25.8 g/mol 67.9 g/mol	
67.9 g/mol51.5 g/mol	
O 67.9 g/mol	1
67.9 g/mol51.5 g/mol	1

5 of 12

3.0 moles			
0 1.0 moles			
0.67 moles			
0.52 moles			

Question 14
1 pts

Consider the following reaction:

CH₄(g) + 2O₂(g) → CO₂(g) + 2H₂O(l)

What is the final volume if 10 L of methane (CH₄) reacts completely with 20 L of oxygen?

It cannot be determined without knowing the temperature at which this reaction takes place.

10 L

15 L

20 L

30 L

Question 15	1 pts
Calculate the volume of methane (CH ₄) produced by the bacterial breakdown of 3.87 kg of sugar (C ₆ H ₁₂ O ₆) at 258 K and torr. $C_6H_{12}O_6(aq) \longrightarrow 3CH_4(g) + 3CO_2(g)$	d 726
○ 2610 L	
○ 858 L ○ 1450 L	
O 1430 L	

6 of 12

Question 16	1 pts
Consider the following reaction:	
$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$	
If the reaction is carried out at constant temperature and pressure, how much H_2 is required to react with 9.8 L of N_2 ?	
O 29.4 L	
O 14.7 L	
O 39.2 L	
O 19.6 L	

Question 17	1 pts
What volume of pure oxygen gas (O_2) measured at 546 K and 1.00 atm is formed by complete dissociation of 0.5 mol of Ag ₂ O?	
$2Ag_2O(s) \longrightarrow 4Ag(s) + O_2(g)$	
○ 33.6 L	
O 5.60 L	
O 16.8 L	
O 11.2 L	

Question 18	pts
If the volume of a gaseous system is increased by a factor of 3 and the temperature is raised by a factor of 6, then the press of the system will by a factor of	sure
O decrease, 18	
increase, 0.5	

Ouiz:	HW02	- Ideal	Gases

increase, 18	
O decrease, 2	
increase, 2	
O decrease, 0.5	
Outstien 40	4
Question 19	1 pt
You have a sample of $\rm H_2$ gas and Ar gas at the same temperature and pressure, but the $\rm H_2$ gas. Assuming the gases behave ideally, which gas has the larger NUMBER DENSITY (gas	
the H ₂ gas	
the Ar gas	
they are the same	
It depends on the value of the temperature and the pressure.	
It depends on the value of the temperature and the pressure.	
	1 pt
Question 20 Which has the higher mass density (g/L): a sample of O_2 with a volume of 10 L, or a sample	
Question 20 Which has the higher mass density (g/L): a sample of O_2 with a volume of 10 L, or a sample	
Question 20 Which has the higher mass density (g/L): a sample of O_2 with a volume of 10 L, or a sample samples are at the same temperature and pressure.	
Question 20 Which has the higher mass density (g/L): a sample of O_2 with a volume of 10 L, or a sample samples are at the same temperature and pressure. • the O_2	
Question 20 Which has the higher mass density (g/L): a sample of O_2 with a volume of 10 L, or a sample samples are at the same temperature and pressure. The O_2 It depends on the value of the temperature and pressure.	
Question 20 Which has the higher mass density (g/L): a sample of O ₂ with a volume of 10 L, or a sample samples are at the same temperature and pressure. the O ₂ It depends on the value of the temperature and pressure. they are the same	1 pt

O 432 g	
O 1180 g	
O 4.10 g	
O 131 g	
Question 22	1;
One method of estimating the temperatu	re of the center of the sun is based on the assumption that the center consists of of 2.00 g/mol. If the density of the center of the sun is 1.40 g/cm ³ at a pressure of
One method of estimating the temperatu	re of the center of the sun is based on the assumption that the center consists of of 2.00 g/mol. If the density of the center of the sun is 1.40 g/cm ³ at a pressure of

Question 23	1 pts
What is the molar mass of a gas if 0.473 g of the gas occupies a volume of 376 mL at 23.0°C and 1.90 atm?	
13.2 g/mol	
1.25 g/mol	
O 16.1 g/mol	
0.0161 g/mol	

	1 pts
Consider the following reaction:	
$2HCI + Na_2CO_3 \longrightarrow 2NaCI + H_2O + CO_2$	
For this reaction, 179.2 L of ${\rm CO_2}$ is collected at STP. How many moles of NaCl are also formed?	
12.5 moles	
O 16.0 moles	
② 8.00 moles	
O 32.0 moles	
in a 1.2 L flask at -190.842°C, it exerted a pressure of 491 torr. What is the molecular formula of the hydr	
in a 1.2 L flask at -190.842°C, it exerted a pressure of 491 torr. What is the molecular formula of the hydr	
in a 1.2 L flask at -190.842°C, it exerted a pressure of 491 torr. What is the molecular formula of the hydr	
C₄H₆C₃H₈	