HW02 - Ideal Gases

4. This is a preview of the draft version of the quiz

Started: Aug 8 at 4:48pm

Quiz Instructions

Homework 02 - Ideal Gases

| Question $\mathbf{1}$ |
| :--- | :--- |
| A gas is enclosed in a 10.0 L tank at 1200 mmHg pressure. Which of the following is a reasonable value for the pressure when |
| the gas is pumped into a 5.00 L vessel? |
| 24 mmHg |
| 0.042 mmHg |
| 600 mmHg |
| 2400 mmHg |

| Question $\mathbf{2}$ |
| :--- | :--- |
| A sample of gas in a closed container at a temperature of $76^{\circ} \mathrm{C}$ and a pressure of 5.0 atm is heated to $399^{\circ} \mathrm{C}$. What pressure |
| does the gas exert at the higher temperature? |
| 0.95 atm |
| 2.6 atm |
| 26 atm |
| 9.6 atm |

Question 3
A flask containing $163 \mathrm{~cm}^{3}$ of hydrogen was collected under a pressure of 26.7 kPa . What pressure would have been required
for the volume of the gas to have been $68 \mathrm{~cm}^{3}$, assuming the temperature is held constant?
78.2 kPa
32.0 kPa
64.0 kPa
11.1 kPa

Question $4 \longrightarrow 1$ pts

A sample of nitrogen gas is contained in a piston with a freely moving cylinder. At $0^{\circ} \mathrm{C}$, the volume of the gas is 371 mL . To what temperature must the gas be heated to occupy a volume of 557 mL ?$-91.2^{\circ} \mathrm{C}$$484^{\circ} \mathrm{C}$$137^{\circ} \mathrm{C}$$212^{\circ} \mathrm{C}$

A 5.00 L sample of a gas exerts a pressure of 1040 torr at $50.0^{\circ} \mathrm{C}$. In what volume would the same sample exert a pressure of 1.00 atm at $50.0^{\circ} \mathrm{C}$?3.33 L0.581 L6.84 L10.5 L

Question 6	1 pts
What mass of $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$	
O 32.4 g	
O21.1 g	
O 13.7 g	
O 16.2 g	

Question 7

Consider the following reaction:
$2 \mathrm{Al}+6 \mathrm{HCl} \longrightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{H}_{2}$
This reaction has a yield of 82.5%. How many moles of HCl are needed to produce 14.0 L of H_{2} at 351 K and 1.11 atm?1.31 mol1.08 mol
0.890 mol

```
0.540 mol
```


Question 8

1 pts

The reaction below has a percent yield of 45.0%.
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HCl}(\mathrm{g})$
How many moles of HCl gas are produced if 15.5 L of Cl_{2} at STP and excess H_{2} are reacted?0.769 mol0.623 mol0.346 mol0.156 mol

| Question 9 |
| :--- | :--- |
| If you have 44.8 L of nitrogen gas at standard temperature and pressure, how much will it weigh? |
| 28 g |
| 26 g |
| 44.8 g pts |

At $80.0^{\circ} \mathrm{C}$ and 12.0 torr, the density of camphor vapor is $0.0829 \mathrm{~g} / \mathrm{L}$. What is the molar mass of camphor?
$3490 \mathrm{~g} / \mathrm{mol}$

O $152 \mathrm{~g} / \mathrm{mol}$
$34.5 \mathrm{~g} / \mathrm{mol}$
$243 \mathrm{~g} / \mathrm{mol}$

Question 11

What is the density of nitrogen gas at STP?$2.50 \mathrm{~g} / \mathrm{L}$$4.00 \mathrm{~g} / \mathrm{L}$$0.625 \mathrm{~g} / \mathrm{L}$$1.25 \mathrm{~g} / \mathrm{L}$

Question 12

A chemist has synthesized a greenish-yellow gaseous compound that contains only chlorine and oxygen and has a density of $7.71 \mathrm{~g} / \mathrm{L}$ at $36.0^{\circ} \mathrm{C}$ and 2188.8 mmHg . What is the molar mass of the compound?$86.9 \mathrm{~g} / \mathrm{mol}$$25.8 \mathrm{~g} / \mathrm{mol}$$67.9 \mathrm{~g} / \mathrm{mol}$$51.5 \mathrm{~g} / \mathrm{mol}$

```
    O.0 moles
```

```1.0 moles
```

```0.67 moles
```

```0.52 moles
```


Question 14

Consider the following reaction:
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
What is the final volume if 10 L of methane $\left(\mathrm{CH}_{4}\right)$ reacts completely with 20 L of oxygen?It cannot be determined without knowing the temperature at which this reaction takes place.10 L15 L20 L30 L

Question 15
1 pts

Calculate the volume of methane $\left(\mathrm{CH}_{4}\right)$ produced by the bacterial breakdown of 3.87 kg of sugar $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ at 258 K and 726 torr.
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq}) \rightarrow 3 \mathrm{CH}_{4}(\mathrm{~g})+3 \mathrm{CO}_{2}(\mathrm{~g})$2610 L858 L1450 L1430 L

| Question 16 |
| :--- | :--- |
| Consider the following reaction: |
| $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ |
| If the reaction is carried out at constant temperature and pressure, how much H_{2} is required to react with 9.8 L of N_{2} ? |
| 14.7 L
 39.2 L
 19.6 L |

Question 17

1 pts

What volume of pure oxygen gas $\left(\mathrm{O}_{2}\right)$ measured at 546 K and 1.00 atm is formed by complete dissociation of 0.5 mol of $\mathrm{Ag}_{2} \mathrm{O}$?
$2 \mathrm{Ag}_{2} \mathrm{O}(\mathrm{s}) \longrightarrow 4 \mathrm{Ag}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})$

O 33.6 L
5.60 L16.8 L11.2 L

Question 18

If the volume of a gaseous system is increased by a factor of 3 and the temperature is raised by a factor of 6 , then the pressure of the system will \qquad by a factor of \qquad _.decrease, 18increase, 0.5
increase, 18

O decrease, 2increase, 2
decrease, 0.5

Question 19

You have a sample of H_{2} gas and Ar gas at the same temperature and pressure, but the H_{2} gas has twice the volume of the Ar gas. Assuming the gases behave ideally, which gas has the larger NUMBER DENSITY (gas particles per volume)?the H_{2} gasthe Ar gasthey are the sameIt depends on the value of the temperature and the pressure.

Question 20

Which has the higher mass density $(\mathrm{g} / \mathrm{L})$: a sample of O_{2} with a volume of 10 L , or a sample of Cl_{2} with a volume of 3 L ? Both samples are at the same temperature and pressure.the O_{2}It depends on the value of the temperature and pressure.they are the same
(0) the Cl_{2}

Question 21	1 pts

What is the mass of oxygen gas in a 16.6 L container at $34.0^{\circ} \mathrm{C}$ and 6.22 atm ?432 g1180 g4.10 g131 g

Question 22

One method of estimating the temperature of the center of the sun is based on the assumption that the center consists of gases that have an average molar mass of $2.00 \mathrm{~g} / \mathrm{mol}$. If the density of the center of the sun is $1.40 \mathrm{~g} / \mathrm{cm}^{3}$ at a pressure of $1.30 \times 10^{9} \mathrm{~atm}$, calculate the temperature.$700^{\circ} \mathrm{C}$$2.26 \times 10^{13}{ }^{\circ} \mathrm{C}$$2.26 \times 10^{10}{ }^{\circ} \mathrm{C}$

- $2.26 \times 10^{7}{ }^{\circ} \mathrm{C}$

Question 23

1 pts

What is the molar mass of a gas if 0.473 g of the gas occupies a volume of 376 mL at $23.0^{\circ} \mathrm{C}$ and 1.90 atm ?$13.2 \mathrm{~g} / \mathrm{mol}$$1.25 \mathrm{~g} / \mathrm{mol}$$16.1 \mathrm{~g} / \mathrm{mol}$$0.0161 \mathrm{~g} / \mathrm{mol}$

Question $\mathbf{2 4}$
Consider the following reaction:
$2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
For this reaction, 179.2 L of CO_{2} is collected at STP. How many moles of NaCl are also formed?
12.5 moles 16.0 moles 8.00 moles 32.0 moles

Question 25

1 pts

The analysis of a hydrocarbon revealed that it was $85.6281 \% \mathrm{C}$ and $14.3719 \% \mathrm{H}$ by mass. When 3.22 g of the gas was stored in a 1.2 L flask at $-190.842^{\circ} \mathrm{C}$, it exerted a pressure of 491 torr. What is the molecular formula of the hydrocarbon?$\mathrm{C}_{2} \mathrm{H}_{4}$$\mathrm{C}_{4} \mathrm{H}_{6}$$\mathrm{C}_{3} \mathrm{H}_{8}$$\mathrm{C}_{4} \mathrm{H}_{10}$

 Not saved \quad Submit Quiz

